Research Guides

Department of Chemistry University of Oxford

Dr Claudia Tait

The fundamental photophysical processes at the basis of the conversion of solar energy to electricity in photovoltaic devices involve species containing unpaired electron spins, from charge-transfer states generated upon light excitation at the interface between donor and acceptor in organic solar cells, to separated charge carriers travelling towards the electrodes and triplet states formed by recombination. Electron Spin Resonance (ESR) spectroscopy selectively probes unpaired electron spins and is used to measure interactions between them or with magnetic nuclei in their vicinity. ESR is therefore uniquely suited for the investigation of materials and devices for photovoltaics and can provide a detailed picture of the molecular environment of the species involved in the photovoltaic process.

The main focus of the research is to advance pulse ESR spectroscopy, in combination with pulsed Electrically Detected Magnetic Resonance (pEDMR), by exploiting advantages provided by shaped microwave pulses and to use it to obtain information on the nature and dynamics of paramagnetic species involved in solar-to-electricity conversion in emerging photovoltaic technologies.

 

Selected Publications

  • Quantitative analysis of doping-induced polarons and charge-transfer complexes of poly(3-hexylthiophene) in solution
    Arvind, M.; Tait, C. E.; Guerrini, M.; Krumland, J.; Valencia, A. M.; Cocchi, C.; Mansour, A. E.; Koch, N.; Barlow, S.; Marder, S. R.; Behrends, J.; Neher, D. J. Phys. Chem. B 2020, 124, 7694–7708 (DOI:10.1021/acs.jpcb.0c03517).
  •  Photoexcited triplet states of twisted acenes investigated by Electron Paramagnetic Resonance. 
    Tait, C. E.; Bedi, A.; Gidron, O.; Behrends, J. Phys. Chem. Chem. Phys. 2019, 21, 21588-21595 (DOI:10.1039/c9cp04135d).
  •  ENDOR with band-selective shaped inversion pulses. 
    Tait, C. E.; Stoll, S. J. Magn. Reson. 2017, 277, 36-44 (DOI:10.1016/j.jmr.2017.02.007).
  •  Coherent pump pulses in Double Electron Electron Resonance Spectroscopy. 
    Tait, C. E.; Stoll, S. Phys. Chem. Chem. Phys. 2016, 18, 18470-18485 (DOI:10.1039/C6CP03555H).
  •  Electronic delocalization in the radical cations of porphyrin oligomer molecular wires. 
    Peeks, M. D.; Tait, C. E.; Neuhaus, P.; Fischer, G. M.; Hoffmann, M.; Haver, R.; Cnossen, A.; Harmer, J. R.; Timmel, C. R.; Anderson, H. L. J. Am. Chem. Soc. 2017, 139, 10461-10471 (DOI:10.1021/jacs.7b05386).
  •  Transient EPR reveals triplet state delocalization in a series of cyclic and linear π-conjugated porphyrin oligomers. 
    Tait, C. E.; Neuhaus, P.; Peeks, M. D.; Anderson, H. L.; Timmel, C. R. J. Am. Chem. Soc. 2015, 137, 8284-8293 (DOI:10.1021/jacs.5b04511).
  •  Triplet state delocalization in a conjugated porphyrin dimer probed by transient Electron Paramagnetic Resonance techniques. 
    Tait, C. E.; Neuhaus, P.; Anderson, H. L.; Timmel, C. R. J. Am. Chem. Soc. 2015, 137, 6670-6679 (DOI:10.1021/jacs.5b03249).
  •  Evidence for water-mediated triplet-triplet energy transfer in the photoprotective site of the peridinin-chlorophyll a-protein.
    Di Valentin, M.; Tait, C. E.; Salvadori, E.; Orian, L.; Polimeno, A.; Carbonera, D. Biochim. Biophys. Acta 2014, 1837, 85-97 (DOI:10.1016/j.bbabio.2013.07.005).

For a complete list of publications see: orcid.org/0000-0002-6337-9324.