Research Guides

 

Research Summary

Quantum Many-Body Correlation

If we can accurately compute the quantum state of the particles in a system of interest, the associated energy, properties, and the response to external stimuli, then we can predict a vast array of chemical phenomena with high confidence. The challenge is to develop methods that are sufficiently accurate to be truly predictive, whilst at the same time requiring modest computational resources so that applications to large, complex systems are routinely feasible.

In the Tew group, our focus is on gaining a deeper understanding of the nature of quantum many-body correlation and translating that understanding into innovative methods for obtaining high-quality approximate solutions the Schrodinger equation, to make it possible to reliably predict energies and properties of molecules and materials and solve chemical problems through computer simulation.

We are interested in the first principles computation of both electronic structure and quantum molecular dynamics and develop algorithms for today's high-performance digital computers and the nascent quantum computers of the future.

 

Selected Publications

TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
S. Ganesh Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, A. Hellweg, B. Helmich-Paris, C. Holzer, U. Huniar, M. Kaupp, A. Marefat Khah, S. Karbalaei Khani, T. Müller, F. Mack, B. D. Nguyen, S. M. Parker, E. Perlt, D. Rappoport, K. Reiter, S. Roy, M. Rückert, G.Schmitz, M. Sierka, E. Tapavicza, D. P. Tew, C. van Wüllen, V. K. Voora, F. Weigend, A. Wodyński, J. M. Yu  J. Chem. Phys. 152, 184107 (2020)

Principal Domains in Local Correlation Theory
D. P. Tew  J. Chem. Theory Comput. 15, 6597 (2019)

Role of Valence and Semicore Electron Correlation on Spin Gaps in Fe (II)-Porphyrins
G. Li Manni, D. Kats, D. P. Tew and A. Alavi  J. Chem. Theory Comput. 15, 1492 (2019)

Ab initio instanton rate theory made efficient using Gaussian process regression
G. Laude, D. Calderini, D. P. Tew and J. O. Richardson  Farad. Disc. 212, 237 (2018)

Witnessing eigenstates for quantum simulation of Hamiltonian spectra
R. Santagati, J. Wang, A. A. Gentile, S. Paesani, N. Wiebe, J. R. McClean, S. Morley-Short, P. J. Shadbolt, D. Bonneau, J. W. Silverstone, D. P. Tew, X. Zhou, J. L. O’Brien and M. G. Thompson  Science Advances. 4, eaap9646 (2018)

Criegee intermediate reactions with carboxylic acids: A potential source of secondary organic aerosol in the atmosphere
R. Chhantyal-Pun, B. Rotavera, Max R McGillen, M. A. H. Khan, A. J. Eskola, R. L. Caravan, L. Blacker, D. P. Tew, D. L. Osborn, C. J. Percival, C. A. Taatjes, D. E. Shallcross and A. J. Orr-Ewing  ACS Earth Space Chem. 2, 833 (2018)

Simulating the vibrational quantum dynamics of molecules using photonics
C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew and A. Laing  Nature 557, 660 (2018)

The Dynamics of the Reaction of FeO+ and H2: A Model for Inorganic Oxidation
S. Essafi, D. P. Tew and J. N. Harvey  Angew.Chem.Int. Ed. 56, 5790 (2017)

Ab Initio Vibrational Spectroscopy of cis- and trans-Formic Acid from a Global Potential Energy Surface
D. P. Tew and W. Mizukami  J. Phys. Chem. A 120, 9815 (2016)

Explicitly correlated coupled-cluster theory with Brueckner orbitals
D. P. Tew  J. Chem. Phys. 145, 074103 (2016)

A compact and accurate semi-global potential energy surface for malonaldehyde from constrained least squares regression
W. Mizukami, S. Habershon and D. P. Tew  J. Chem. Phys. 141, 144310 (2014)

Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems
G. Schmitz, C. Hättig and D. P. Tew  Phys. Chem. Chem. Phys. 16, 22167 (2014)

Professor David Tew

Physical and Theoretical Chemistry

david.tew@chem.ox.ac.uk

Research Group Website

http://research.chem.ox.ac.uk/david-tew.aspx