Research Guides

Professor S.G. Davies

Research within the Davies group is concerned with investigations into a wide variety of topics including the development of new synthetic methodology, catalysis, mechanistic investigations, total synthesis and collaborative projects in medicinal chemistry. For example, this includes  new applications for the conjugate addition of enantiopure lithium amides, development of kinetic resolution processes for the preparation of functionalised molecular building blocks, new methods for nucleophilic fluorination, methodology for the chemoselective functionalisation of unsaturated amines at the olefin (rather than the nitrogen atom), and application of these methodologies to the total synthesis of natural products of biological significance (including pyrrolidines, piperidines, tropanes, pyrrolizidines, and imino- and aminosugars).

(i) Lithium Amide Conjugate Addition

Chiral lithium amides have been extensively used and studied within organic synthesis as effective reagents for a range of transformations including enantioselective reduction, alkylation, deprotonation, desymmetrisation and kinetic resolution. Lithium amides may also act as nucleophiles. Within this arena, we have shown that the conjugate addition of a range of secondary lithium amides, derived from enantiopure α-methylbenzylamine, to α,β-unsaturated esters represents an efficient method for the preparation of β-amino esters and their derivatives (including β-amino acids and various alkaloids). We have exploited this reaction in a range of synthetic applications, including the initiation of tandem processes, enantiorecognition phenomena, and total synthesis. More information is available here.

Lithium Amide Conjugate Addition Methodology

Key Publication:
The conjugate addition of enantiomerically pure lithium amides as chiral ammonia equivalents part II: 2005–2011
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E. Tetrahedron: Asymmetry 2012, 23, 1111
[View Journal Page]

(ii) Ammonium Directed Oxidation of Allylic Amines

Treatment of allylic amines with acid followed by m-CPBA gives the corresponding amino diols as the major products, consistent with hydrogen-bond directed attack of the peracid to give the corresponding epoxide, followed by regioselective ring-opening. This metal free sequence of reactions leads to very highly diastereoselective transformations in both cyclic and acyclic systems. We have used this methodology as the key synthetic step to enable the asymmetric syntheses of iminosugars such as (+)-1-deoxynojirimycin and aminosugars such as L-acosamine. More information is available here.

Ammonium Directed Oxidation

Key Publication:
Concise and selective asymmetric synthesis of acosamine from sorbic acid
Bagal, S. K.; Davies, S. G.; Fletcher, A. M.; Lee, J. A.; Roberts, P. M.; Scott, P. M.; Thomson, J. E. Tetrahedron Lett. 2011, 52, 2216 [View Journal Page]

(iii)  Ring-closing iodoamination

Treatment of a range of unsaturated amines with iodine promotes ring-closing iodoamination with concomitant N-debenzylation, providing an efficient and stereoselective route to azacycles such as pyrrolidines, pyrrolizidines and tropanes. This methodology has been used in a series of natural product syntheses including (‒)-7a-epi-hyacinthacine A1, (+)-pseudococaine and (‒)-codonopsinine. More information is available here.

Ring-closing Iodoamination Methodology

Key Publication:
Asymmetric synthesis of polyhydroxylated pyrrolizidines via transannular iodoamination with concomitant N-debenzylation
Brock, E. A.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Thomson, J. E. Org. Lett. 2011, 13, 1594
[View Journal Page]

We have utilised the methodology developed in the group in total syntheses of a range of enantiopure compounds including natural products, their analogues and other potential therapeutic agents. Recently completed syntheses include (+)-pseudococaine, (−)-absouline, (−)-angustueine, (+)-pseudodistomin D, (+)-1-deoxynojirimycin, (−)-nakinadine D, (−)-codonopsinine and (−)-hopromalinol. More information, including more examples of recent target syntheses, is available here.

Total Synthesis of Natural Products


There is huge potential for chemistry to have an enormous impact on the biological and medicinal world. We have several highly successful multidisciplinary research collaborations including the development of small molecules to determine stem cell fate, novel protein tyrosine phosphatase inhibitors for treatment of cancer and transcriptional upregulation of utrophin in the treatment of Duchenne Muscular Dystrophy (DMD). More information is available here.

Medicinal Chemistry Programmes


Steve has published over 600 papers, and has an h-index (Web of Science) of 63. A full list of his publications is available here; the ten most recent papers are shown below.


(608).  Asymmetric syntheses of fagomine and its stereoisomers
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.;Thomson, J. E. Tetrahedron 2019, DOI: 10.1016/j.tet.2019.130727 [View Journal Page]

(607).  Isolation, structural identification, synthesis, and pharmacological profiling of 1,2-trans-dihydro-1,2-diol metabolites of the utrophin modulator ezutromid
Chatzopoulou, M.; Claridge, T. D. W.; Davies, K. E.; Davies, S. G.; Elsey, D.; Emer, E.; Fletcher, A. M.; Harriman, S.; Robinson, N.; Rowley, J.; Russell, A. J.; Tinsley, J.; Weaver, R.; Wilkinson, I.; Willis, N.; Wilson, F.; Wynne, G. M. J. Med. Chem. 2019, DOI: 10.1021/acs.jmedchem.9b01547 [View Journal Page]

(606).  The asymmetric synthesis of (S,S)-methylphenidate hydrochloride via ring-opening of an enantiopure aziridinium intermediate with phenylmagnesium bromide
Davies, S. G.; Fletcher, A. M.; Peters, M. E.; Roberts, P. M.; Thomson, J. E. Tetrahedron 2019, DOI: 10.1016/j.tet.2019.130713
[View Journal Page]

(605).  Asymmetric synthesis of the allocolchicinoid natural product N-acetylcolchinol methyl ether (suhailamine), solid state and solution phase conformational analysis
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E.; Yeung, A. Tetrahedron 2019, DOI: 10.1016/j.tet.2019.130694
[View Journal Page]

(604).  Synthesis of (−)-conduramine A1, (−)-conduramine A2 and (−)-conduramine E2 in six steps from cyclohexa-1,4-diene
Da Silva Pinto, S.; Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E. Org. Lett., 2019, 21, 7933 [View Journal Page]

(603).  N-Acetylcolchicinol methyl ether – a natural product: suhailamine – a phantom natural product
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E.; Yeung, A. J. Nat. Prod. 2019, 82, 2659 [View Journal Page]

(602).  The Hancock alkaloids angustureine, cuspareine, galipinine and galipeine a review of their isolation, synthesis and spectroscopic data
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E. Euro. J. Org. Chem. 2019, 5093 [View Journal Page]

(601).  Lithium amides as homochiral ammonia equivalents for conjugate additions to α,β-unsaturated esters: asymmetric synthesis of (S)-β-leucine
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E. Org. Synth. 2019, 96, 53 [View Journal Page]

(600).  SuperQuat chiral auxiliaries: design, synthesis, and utility
Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Thomson, J. E. Org. Biomol. Chem. 2019, 17, 1322
[View Journal Page]

(599).  Rapid stereoselective syntheses of heteroarene-fused azacycles via diastereoselective conjugate addition of heteroaryl substituted lithium amides
Davies, S. G.; Fletcher, A. M.; Holder, K. E.; Roberts, P. M.; Thomson, J. E.; Zimmer, D. Heterocycles 201999, 919
[View Journal Page]







powered by mojoPortal, layout by artiseer, design by karl harrison v3.3 may 2021